If you are using an X1 ThinkPad, these steps replace steps 2-5 on page 3-3.

1. From the Desktop screen, click the start button and begin typing *Capstone* and select *Pasco Capstone* from the list.
2. From the left *Tools* palette, select *Hardware Setup*.
3. If an image of the interface is shown in the window, proceed to the next step. Otherwise, click *Choose Interface* and select *ScienceWorkshop 750*.
4. Click on *Digital Channel 1* on the image and select *Photogate* from the resulting menu.
5. Next, select *Timer Setup* from the *Tools* palette.
6. In Step 1 of the Timer Setup, select *Next* thus choosing a Pre-Configured Timer.
7. In Step 2, ensure *Photogate, Ch 1* is checked and click *Next*.
8. In Step 3, select *Pendulum Timer* from the timer type drop-down menu.
9. Ensure that *Period* is selected as a visible measurement in Step 4 and select *Next*.
10. Enter the width of the tab extended from the inertia balance tray in meters in Step 5 and click *Next*.
11. Finally, click finish in Step 6.
12. You may now click again on *Timer Setup* in the *Tools* palette to close the drawer.
13. From the *Displays* palette on the right, double click on *Table* to open a blank table.
14. Click on *Select Measurement* from the top of one of the columns and choose *Period* from the resulting drop-down menu. (The other column is not needed.)
15. Note: The *Record* button in Capstone takes the place of *Start* in DataStudio.
16. To display the mean of your measurements, select *Display selected statistics* from the table toolbar by moving your mouse toward the top of the table and selecting the sigma icon from the appearing toolbar.

If you are using an X1 ThinkPad, these steps replace all Apparatus setup steps on page 3-5.

1. Save your data from the inertia balance.
2. Under the *File* menu, choose *New Experiment*.
3. From the left *Tools* palette, select *Hardware Setup*.
4. If an image of the interface is shown in the window, proceed to the next step. Otherwise, click *Choose Interface* and select *ScienceWorkshop 750*.
5. Click on Digital Channel 1 on the image and select Photogate from the resulting menu.
6. Click on Digital Channel 2 on the image and again select Photogate from the resulting menu.
7. Next, select Timer Setup from the Tools palette.
8. In Step 1 of the Timer Setup, select Next thus choosing a Pre-Configured Timer.
9. In Step 2, ensure Photogate, Ch 1 and Photogate, Ch 2 are checked and click Next.
10. In Step 3, select Two Photogates (Single Flag) from the timer type drop-down menu.
11. Ensure that Speed in Gate 1 and Speed in Gate 2 are selected as visible measurements in Step 4 and select Next.
12. Enter the width of the cart flag in meters for Flag Length in Step 5 and click Next (Note that it is irrelevant what is entered for Photogate Spacing for this experiment).
13. Finally, click finish in Step 6.
14. You may now click on Timer Setup in the Tools palette to close the drawer.
15. From the Displays palette on the right, double click on Table to open a blank table.
16. Click on Select Measurement from the top of one of the columns and choose Speed in Gate 1, Ch 1 from the resulting drop-down menu. Select Speed in Gate 2, Ch 2 for the second column. (The data for each run will appear on distinct lines due to the fact it is recording each row as an instance in time and is not aware of your intended trials. If this is bothersome, you may double click on Table in the Displays palette again to create a second table. This will allow you to remove the Ch 2 measurement from one table and display it in the second table eliminating the blank spaces between trials.)
17. Ensure that the Photogate connected to Channel 1 corresponds to the gate that will measure your initial velocity.
18. Note: The Record button in Capstone takes the place of Start in DataStudio.
19. Test your equipment:
 a. Turn on the air supply and test to see that the track is level, or nearly level, by noting whether the cart, initially at rest, remains at rest. Adjust the leveling support screw at one end of the track, if necessary.
 b. Be sure the cart/string/nut combination is positioned in such a way so that the nut is always falling as the cart passes between the two photogates.