Timing and Energy Response of Six Prototype Scintillators

CCM Kyba¹, J Glodo²,
EVD van Loef², JS Karp¹, KS Shah²

¹University of Pennsylvania
²Radiation Monitoring Devices

SCINT 2007
June 7, 2007
Motivation (1)

- Standard PET uses line-of-response (LOR) to determine activity distribution
- The use of time of flight (TOF) information reduces correlations
- TOF reconstruction algorithms take advantage of local positioning to improve sensitivity
Clinical Advantage of TOF-PET

Example: Colon cancer images for a heavy weight patient

Improvement in lesion detectability with TOF

Improving timing capabilities will extend TOF benefits to all patients
Motivation (2)

- New scintillators are interesting for future TOF-PET scanners
- Understanding differences between benchtop measurements and scanner performance
- Energy and timing measurements are necessary for the planning of future scanners
Scintillator Samples from RMD

- YI$_3$ (2% Ce)
- LuGdI$_3$ (2% Ce)
- LuI$_3$ (2, 5, 10% Ce)
- CeBrCl$_3$
- Samples are hygroscopic, and packaged inside glass window
- Variations in packing affect light output
- LaBr$_3$ (5% Ce) crystal from Saint-Gobain used as reference
Timing and Energy Comparison

<table>
<thead>
<tr>
<th>Sample</th>
<th>Resp (%)</th>
<th>E_{FWHM} (%)</th>
<th>T_{FWHM} (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaBr$_3$ (5% Ce)</td>
<td>100</td>
<td>4.4</td>
<td>160</td>
</tr>
<tr>
<td>LuI$_3$ (2% Ce)</td>
<td>65</td>
<td>8</td>
<td>178</td>
</tr>
<tr>
<td>CeBrCl$_3$</td>
<td>58</td>
<td>10</td>
<td>159</td>
</tr>
<tr>
<td>LuGdI$_3$ (2% Ce)</td>
<td>52</td>
<td>54</td>
<td>253</td>
</tr>
<tr>
<td>YI$_3$ (2% Ce)</td>
<td>49</td>
<td>18</td>
<td>201</td>
</tr>
<tr>
<td>LuI$_3$ (5% Ce)</td>
<td>40</td>
<td>19</td>
<td>204</td>
</tr>
<tr>
<td>LuI$_3$ (10% Ce)</td>
<td>35</td>
<td>21</td>
<td>203</td>
</tr>
</tbody>
</table>
Energy Linearity Setup

Also test 133Ba, 137Cs, and 57Co

22Na sample

H4968

ADC
Gate
CAMAC

PC

CFD
Fitting Multiple ^{133}Ba Peaks

- Requires good energy resolution
- Easy with LaBr$_3$ (4.4% FWHM), very difficult beyond 10% E_{res}
- If peaks are not distinguishable used ~ 294 and 356keV
LaBr₃ Energy Proportionality

- Eight energy points used in fit
- Data agrees with a linear fit within uncertainties, but the intercept is not at zero
Energy Proportionality

- Uncertainty due to changes in pedestal, larger fraction at lower ADC values
- LaBr$_3$ is proportional in the range studied
Energy Proportionality

- Uncertainty due to changes in pedestal, larger fraction at lower ADC values
- LaBr$_3$ is proportional in the range studied
- LYSO noticeably non-proportional
Energy Proportionality

- Uncertainty due to changes in pedestal, larger fraction at lower ADC values
- LaBr$_3$ is proportional in the range studied
- LYSO noticeably non-proportional
- LuI$_3$ in between
Energy Proportionality

- Uncertainty due to changes in pedestal, larger fraction at lower ADC values
- LaBr$_3$ is proportional in the range studied
- LYSO noticeably non-proportional
- LuI$_3$ in between
- CeBrCl$_3$ in between
Energy Proportionality

- Uncertainty due to changes in pedestal, larger fraction at lower ADC values
- LaBr$_3$ is proportional in the range studied
- LYSO noticeably non-proportional
- LuI$_3$ in between
- CeBrCl$_3$ in between
Further Considerations for TOF-PET

The image quality, lesion detectability, and quantification possible on a clinical scanner are dependent upon each of these properties.
Summary

• LuI$_3$ and CeBrCl$_3$ are already interesting possibilities for future TOF-PET scanners
 – LuI$_3$ has a higher stopping power than LaBr$_3$
 – The PMT used in this study was not well matched to the frequency spectrum of LuI$_3$. A better match would lead to increased light detection/energy resolution

• Crystal development and testing continues
 – Multiple samples and long crystals
 – Development of detector arrays