Spatial Distribution of Electron-Hole Pairs Created by Photons in Detector Materials

Fei Gao, Luke Campbell, Yulong Xie, Ram Devanathan, Anthony Peurrung, William Weber

Pacific Northwest National Laboratory

Supported by the Radiation Detection Materials Discovery Initiative at PNNL
Outline

• **Introduction**
 - Spatial distribution of electron-hole pairs (e-h) – previous simulations
 - Calculation of e-h pair yield
 - Several issues to be addressed

• **Monte Carlo Model**

• **Production of e-h pairs**
 - Electron cascade and number distribution of e-h pairs
 - \(W \) value and *Fano* Factor

• **Spatial Distribution of Electron-Hole Pairs**
 - Conventional detailed MC method
 - Spatial distributions of electron-hole pairs (in Ge)
Introduction

Most previous simulations of e-h pairs – only consider track structure of secondary electrons created by photons to evaluate \(\frac{dE}{dx} \) [NIMA 563 (2006) 116]

Total deposited energy: 100 keV electron in CdZnTe – linear electron cascade

- e-h pair density (or number of e-h pairs) - \(\rho = \frac{1}{W} \frac{dE}{dx} \)

 \(W \) – mean energy required to create an electron-hole pair
Introduction

- Nonlinear electron cascade- more accurate calculations of intrinsic properties

- Nonlinearity observed in scintillators

- Several issues – detailed distribution of e-h pairs
 - e-h pair recombination
 - Nonlinear electron cascade- more accurate calculations of intrinsic properties
 - Nonlinearity observed in scintillators

E-h pair distribution by a 140 keV photon in amorphous-Si
Monte Carlo Model

- Model – interaction of photon with materials:
 - Photoelectric absorption
 - Compton scattering
 - Electron-positron pair production

- Model – detailed energy-loss mechanisms for electrons (inelastic)
 - Electron-Phonon interaction
 - Valence Band Ionization
 - Excitation of Plasmons and Decay
 - Core shell ionization (K and L-shell…..)
 - Shake-off electrons
 - Bremsstrahlung emission – energy loss
 - Band structure effects (for semiconductors)
 - Stopping criteria for electrons – 2.5 eV

- Model – elastic interaction

- Mean free path between collisions:
 \[\lambda^{-1} = N(\sigma^{el} + \sigma^{in}) \]
Electron Cascades in Ge

- Photon energy – 50 eV ~ 2 MeV
- Number of simulations for each energy – 10^5 (statistics)
- Band gap – 0.74 for Ge

Electron distribution in Ge

- Asymmetric
- Not perfect Gaussian distribution
- No. electrons/event = 16.8, 54.3 and 224.6 for 50, 150 and 600 eV, respectively
Electron Cascades in Ge

- Symmetric distribution
- Approximate Gaussian distribution
- No. electrons ~ 557.4 and 2893.2 for 40 and 662 keV, respectively
- Height of the distribution decreases with increasing energy
- Width of the distribution increases with increasing energy

662 keV gamma ray from 137Cs
Electron Cascades in Ge

- **W** value and Fano Factor

- **W:** For $E (> 2 \text{ keV})$, ~ 2.64 eV (exp: 2.6 – 2.9 eV)
- **F:** For $E (> 2 \text{ keV})$ 0.11 (exp: 0.09 ~ 0.195)
Electron Cascades in Several Materials

- Intrinsic resolution: \[\Delta E_{in} = \frac{\sqrt{8 \ln(2)} WF}{E} \]

![Graph showing simulations and experiments for different materials]

- Band gap (eV)
- Energy (E)
- Simulations
- Experiments
- Ge
- SiGe
- Si
- CZT

\[\Delta E_{in} = 2.355 \left[\frac{0.12E_g^2 + 0.22E_g + 0.057}{E} \right]^{1/2} \]
Spatial Distribution of e-h Pairs

- Distribution of electron-hole pairs in Ge (2 keV)

- Electrons created by plasmon – along the track
- Electrons created by interband transition – at periphery of cascade volume
- There are some single electrons and holes.
- Most electrons and holes are close to each other.
- Thermalized electrons can move away from cascade volume.

40 nm
Spatial Distribution of e-h Pairs

- Distribution of electron-hole pairs in Ge (2 keV)

- Distribution of electron-hole pairs is different for different cascade (same energy)
- Density of electron-hole pairs along main path is high
- Density of electron-hole pairs at the periphery of cascade volume is low.
Spatial Distribution of e-h Pairs

- Distribution of electron-hole pairs in Ge (10 keV)

- Nonlinear electron cascade
Dynamic process of electron-hole pair creation (1 keV)
Conclusions

- A Monte Carlo code has been developed to simulate electron cascade, production of e-h pairs and their number distribution in detector materials.

- Intrinsic resolution in semiconductors follows:

\[
\frac{\Delta E_{\text{in}}}{E} = 2.355 \left[\frac{0.12 E_g^2 + 0.22 E_g + 0.057}{E} \right]^{1/2}
\]

- Plasmon and interband transition are major mechanisms to generate e-h pairs in semiconductors.

- Spatial distribution of e-h pairs indicates that electrons created by plasmon are along the track, while electrons created by interband transition distribute at the periphery of cascade volume - nonlinear electron cascade.
Thank You
Monte Carlo Model

- Cross sections – based on the generalized oscillator strength model, a new model has been developed.
- Total cross section – within 2%-8% of experimental measurements
- Band structure effects on cross sections at low energy (<20 eV) must be calculated
First-Principles Approach

- Differential electronic scattering cross section determined by dielectric function

\[
\frac{\partial \sigma(q, \omega)}{\partial q \partial \omega} = -\frac{8\pi \Im[\varepsilon^{-1}(q, \omega)]}{q^2} \nu n
\]

- Dielectric function is a function of band energies and orbitals

\[
\varepsilon(q, \omega) = f(E_{n,k}, < r | n, k >)
\]

- Need band energies \(E_{n,k} \) and orbitals \(< r | n, k > \)
 - Use ABINIT code to get band structure - Plane wave basis set, pseudopotentials
 - Correct DFT band energies using GW method.
 - Use DFT Kohn-Sham eigenfunctions for orbitals
First-Principles Approach

- Our calculated dielectric function for silicon is similar to experiments

With differential cross section known, we can integrate over q, ω to find total cross section & electron mean free paths.

- Determine secondary particle (electron, hole) spectrum from plasmon decay

Experiment

Theory

Pacific Northwest National Laboratory
U.S. Department of Energy
First-Principles Approach

- Cross section – ab initio data model

- Total cross section is in reasonable agreement with that from ab initio data model.

- We will apply the ab initio data model to known and unknown materials.

- Solving the partial-wave expanded Dirac equation for the motion of the projectile in the field of the target atom

\[
\frac{d\sigma_{el}}{d\theta} = |f(\theta)|^2 + |g(\theta)|^2
\]

\[
f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} \{ (l+1)[\exp(2i\delta_{l-}) - 1] + 1[\exp(2i\delta_{l+}) - 1] \} P_l(\cos \theta)
\]

\[
g(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} \{ \exp(2i\delta_{l-}) + \exp(2i\delta_{l+}) \} P_l(\cos \theta)
\]

- DCS

\[
\sigma_{el} = \int \frac{d\sigma_{el}}{d\theta}
\]

\[\delta_i \text{ – phase shifts} \]

\[P_l(cos \theta) \text{ – Legendre polynomials} \]
Spatial Distribution

- Approach – conventional detailed MC method
 - Each simulated path of a particle – characterized by a series of states:
 \[\{r_n, E_n, \cos \theta_n \} \]
 - Mean free path between collisions:
 \[\lambda^{-1} = N(\sigma^{el} + \sigma^{in}) \]
 - Length \(s \) of the free path to the next collision is obtained by random sampling from the distribution:
 \[p(s) = \lambda^{-1} \exp(-s/\lambda) \quad \Rightarrow \quad r_{n+1} = r_n + s \cos \theta_n \]
 - If elastic collision, \(\theta \) is sampled from the distribution;
 - If inelastic collision, \(\theta \) is fixed by energy and momentum conservation:
 \[Q(Q + 2mc^2) = c^2 \left(p^2 + p'^2 - 2pp' \cos \theta \right) \]

 Momentum transfer – \(q=p-p' \)

 Recoil energy, \(Q - Q=\sqrt{(cq)^2+mc^2} - mc^2 \)
 - Azimuthal scattering angle, \(\phi \) – \(\phi = 2\pi \text{rand}() \)

- \(p(\theta) = \frac{1}{\sigma^{el}} \frac{d\sigma^{el}}{d\theta} \)

- Depends on type of inelastic collisions